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First integrals of the equations of motion of a symmetric
gyrostat on a perfectly rough plane�
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Abstract

The problem of the motion of a dynamically symmetric gyrostat without slipping on a fixed horizontal plane is investigated.
When the surface of the gyrostat and the distribution of the masses in it satisfy a certain condition, supplementing and developing
the results obtained by Mushtari [Mushtari KhM. The rolling of a heavy solid of revolution on a fixed horizontal plane. Mat Sbornik
1932; 39(1, 2):105–26], an explicit form of two first integrals of the equations of motion of the gyrostat, in addition to the energy
integral, is presented.
© 2006 Elsevier Ltd. All rights reserved.

Chaplygin,2 when establishing the integrability of the problem of the motion of a dynamically symmetric solid
of revolution on a perfectly rough plane, pointed out that the problem remains integrable when a uniformly rotating
dynamically and geometrically symmetric rotor, whose axis of rotation coincides with the axis of symmetry of the
body, is added to the body. The equations of motion of a gyrostat of similar form, in addition to an energy integral,
allow of two first integrals, that are linear in the generalized velocities. However, an explicit form of these integrals
is only known in the case when the gyrostat is bounded by a spherical surface.2,3 When the gyrostat is a heavy disc,
carrying the rotor, the axis of rotation of which is perpendicular to the plane of the disc and passes through its centre
of mass, the integrals, linear in the velocities, are expressed using hypergeometric series.2,4 For additional restrictions,
imposed on the moments of inertia of the body and on the value of the gyrostatic moment of the rotor, a further two
cases were obtained in Ref. 1 when all the first integrals of this problem can be expressed in explicit form, namely (1)
the surface of the body, carrying the rotor, is formed by rotating the arc of the parabola about the axis passing through
its focus, and (2) the body is a paraboloid of revolution. For gyrostats, whose surface has a different shape, an explicit
form of the first integrals, linear in the velocities, is unknown. Below we attempt to obtain some new cases when all
the integrals of the problem can be expressed explicitly.

1. Formulation of the problem and the equations of motion

Suppose a rigid body, symmetrical in shape and mass distribution about a certain axis, is at rest at a point M on a
fixed horizontal plane Oxy. We connect a rotor to the body, the axis of the rotor coinciding with the axis of symmetry
of the body. The body with the rotor represents a dynamically symmetric gyrostat.5 We will use the following notation:
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Fig. 1.

� is the angle between the axis of symmetry of the body and the vertical, � is the angle between the meridian M� of the
body and some fixed meridional plane, and � is the angle between the horizontal tangent MQ of the meridian M� and
the Ox axis. The position of the body will be completely defined by the angles �, � and �, and the x and y coordinates
of the point M.

In addition, we will introduce a system of coordinates G��� with origin at the centre of mass G of the gyrostat,
which moves both in space and in the body so that the G� axis coincides with the axis of symmetry of the body, the
G� axis lies all the time in the plane of the vertical meridian, while the G� axis is perpendicular to this plane (see the
Fig. 1). Suppose the velocity vector v of the centre of mass G, the angular velocity vector � of the body, the angular
velocity vector � of the trihedron G��� and the reaction of the plane R are specified in the system of coordinates G���
by the components υ�, υ�, υ�; p, q, r; ��, ��, �r and R�, R�, R� respectively. Suppose m is the mass of the gyrostat,
A1 is the moment of inertia of the gyrostat about the G� and G� axes, and A3 is the moment of inertia of the body about
the G� axis. We will denote the gyrostatic moment of the rotor about its axis of rotation by s; ignoring friction in the
bearings of the rotor axis, the quantity s can be assumed to be constant.

Note6 that the distance GQ from the centre of gravity to the Oxy plane will be a function of the angle � i.e. GQ = f(�).
The coordinates �, �, � of the point M where the body touches the plane in the system of coordinates G��� will also
be functions of only the angle �, where � = 0, and

(1.1)

Since the G� axis is fixed in the body, we have �� = p, �� = q. The G�� plane will all the time be vertical, and hence
�� − �� ctg� = 0. The velocity of the point of contact is equal to zero, and consequently

The theorem of the motion of the centre of mass as a projection onto the G� axis and the theorem of the change in
the angular momentum for the G� and G� axes, after simple transformations, give

(1.2)
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Omitting henceforth the special case when � = const and bearing in mind that q = −d�/dt, by eliminating R� from
system (1.2) we obtain

(1.3)

Hence, from system (1.3) we can determine two first integrals of the equations of motion of the gyrostat that are
linear in p and r. At present an explicit form of these integrals can only be obtained in some special cases.1–4 In this
paper we point out some new cases when, in the problem of the motion of a dynamically symmetric gyrostat, one can
obtain first integrals in explicit form that are linear in p and r.

2. Derivation of the first integrals

The system of equations (1.3) can be represented in the form

(2.1)

Here we have introduced the following notation

We will assume that the surface of the gyrostat and the distribution of the masses in it are such that the following
condition is satisfied

(2.2)

where � is an arbitrary constant.
Condition (2.2) was written for the first time in Ref. 1 when investigating the motion of a heavy dynamically

symmetric solid of revolution (without a rotor). It was shown there that when this condition is satisfied the equations of
motion of a solid of revolution (having the form of Eq. (1.3) in which we put s = 0) allow of a first integral r = r0 = const.
In this case, when condition (2.2) is satisfied we have h(�) ≡ 0, and it follows from the first equation of system (2.1)
that the following quantity is preserved

(2.3)

After some simplification, this integral can be represented in the form

(2.4)
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After finding integral (2.4) it is easy to obtain the other first integral in explicit form. Using relation (2.3), we obtain

Substituting the expression obtained for � into the second equation of system (2.1), we reduce it to the form

Consequently, Eq. (2.1), in addition to integral (2.4), also allow of the following integral

(2.5)

Hence, when condition (2.2) is satisfied the equations of motion of a dynamically symmetric gyrostat on a perfectly
rough plane allow of first integrals (2.4) and (2.5). We will now investigate what shape the surface of the gyrostat
should have in order for it to satisfy condition (2.2).

3. Determination of the shape of the gyrostat surface

Consider condition (2.2) and assume initially that � = 0. Substituting expressions (1.1) for �, � and their derivatives
into condition (2.2) and introducing the dimensionless parameter k = A3/A1, we find that the function f(�), which defines
the shape of the gyrostat surface, must satisfy the equation

(3.1)

It is easy to show that Eq. (3.1) has two particular solutions

(3.2)

which were pointed by Mushtari for the first time in Ref. 1. We will investigate what other solutions this equation has.
We will put

Then, we can write Eq. (3.1) for the function g(�) as follows:

(3.3)

Making the change of independent variable in Eq. (3.3) in accordance with the formula

we reduce it to the Gauss hypergeometric equation7

(3.4)

Hence, Eq. (3.1) has the non-trivial particular solution



40 A.S. Kuleshov / Journal of Applied Mathematics and Mechanics 70 (2006) 36–41

and the general solution of Eq. (3.1) can be written as follows:

(3.5)

Here F = F(a, b, c; z) is the Gauss hypergeometric function.7 We will show how one can obtain particular solutions
(3.2) from the general solution (3.5). To do this we will make two assumptions. Suppose 	 = 0 in formula (3.5). Then
the function f(�) is given by the formula

We will now assume that the function F in this expression can be represented by a finite sum, i.e. one of its parameters
is equal to a negative integer or zero.7 In the case considered this means that 
 = −N, where N is a natural number or
zero. Hence we obtain

(3.6)

Using the formula7

we can also conclude that the hypergeometric series will be a finite sum, if the number c − b is equal to a negative
integer. In the case considered this condition gives 2 − 
 = −N, whence we find

(3.7)

When N = 0, from Eq. (3.6) we obtain k = 2, and it follows from Eq. (3.7) that k = 2/3. Consequently, the particular
solutions (3.2), given for the first time by Mushtari in Ref. 1, are obtained from the general solution (3.5) when 	 = 0
and N = 0. In the general case the set of functions which satisfy Eq. (3.1) is defined by formula (3.5) and has the power
of a continuum.

We will now assume that the constant � �= 0 in condition (2.2). In this case the equation for determining the function
f(�) will have the form

(3.8)

Making the replacement of the independent variable in (3.8) in accordance with the formula

we reduce it to the equation

(3.9)

known as Heun’s equation.8,9 In the case considered here

When |a1| ≥ 1 and �1 �= 0, −1, −2, −3, . . ., the solution of Eq. (3.9) can be represented in the form of a series

(3.10)
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the coefficients of which are defined by the recurrence formulae

This series necessarily converges when |w| ≤ 1. Note, however, that Heun’s equation (3.9) has been investigated
considerably less than the hypergeometric equation. For example, unlike the hypergeometric function, there is no
integral representation of Heun’s function (3.10). Little is also known about to what functions Heun’s function reduces
for particular values of its parameters.

Hence, when � = 0, the body surface, that satisfies condition (2.2), is determined using the hypergeometric function
(see formula (3.5)), and when � �= 0 it is determined using Heun’s function (3.10).
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